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Abstract—Event detection is an important application of wire-
less sensor networks. When the event signature is sparse in a
known domain, mechanisms from the emerging area of Com-
pressed Sensing (CS) can be applied for estimation with average
measurement rates far lower than the Nyquist requirement. A re-
cently proposed algorithm called IDEA uses knowledge of where
the signal is sparse combined with a greedy search procedure
called Orthogonal Matching Pursuit (OMP) to demonstrate that
detection can be performed in the sparse domain with even fewer
measurements. A different approach called Basis Pursuit (BP),
which uses `1 norm minimization, provides better performance
in reconstruction but suffers from a larger sampling cost since
it tries to estimate the signal completely.

In this paper, we introduce a mechanism that uses a modified
BP approach for detection of sparse signals with known signature.
The modification is inspired from a novel development that
uses an adaptively weighted version of BP. We show, through
simulation and experiments on MicaZ motes, that by appropri-
ately weighting the coefficients during `1 norm minimization,
detection performance exceeds that of an unweighted approach
at comparable sampling rates.

I. INTRODUCTION

Detecting interesting events in a noisy and interference
prone environment is a critical application of sensor networks
[1], [2]. Classic methods such as Hypothesis Testing focus on
minimizing error by testing the statistical significance of the
event signature while taking noise characteristics into account
[3]. Besides being robust to noise, simple hypothesis testing
has the advantage of being computationally economical [4].
Although it performs well in many cases, it suffers in interfer-
ence prone environments. For example, if the detection scheme
monitors the power level of a signal, strong interference would
trigger a false alarm.

Transform domain analysis of the signal helps differentiate
the event against interference [5], [6], but requires expen-
sive transformation steps before detection can be performed.
Furthermore, in order to ensure that the transformed signal
has sufficient information, most approaches implicitly assume
a Nyquist sampling rate for sensing. While this is required
for some applications, sampling at the Nyquist rate is often
wasteful, especially when the event signature is known to be
sparse, i.e. has few non-zero values.

Advances in the emerging area of Compressed Sensing (CS)
[7], [8] suggest that if the signal is sparse in a known domain,
very few measurements need to be taken in an incoherent
domain to reconstruct the signal perfectly with overwhelming
probability. If it were possible to transform the signal to the
sparse domain at the source, this would be no different than

transform domain analysis. The key difference underpinning
CS mechanisms is that the structure of these sparse signals can
be described quite compactly even in the incoherent domain
if the so-called restricted isometry property (RIP [9], [10]) is
obeyed. Practically, this implies, first, that the signal has to
be transformed into this incoherent domain at the source and
second, that the measurements must obey the RIP. Researchers
have shown [11] that by taking suitable random projections of
the signal, both these requirements are met.

CS mechanisms are especially beneficial to sensor networks
because the nodes are usually constrained in sensing, compu-
tation, memory and communications bandwidth. For example,
in applications based on acoustic signals [12], [13], low-end
sensor network platforms, including MicaZ motes, lack the
ability to sample data at Nyquist rates. Resultingly, Allen et.
al. [12] use an ARM processor based sensor node for detecting
marmot calls and Wang. et. al. [13] use higher end sensor
nodes partly due to sampling rate requirements. In addition to
sensing cost, high sampling rates are detrimental to the energy
efficiency of both computation and communication.

Proposed CS reconstruction algorithms are computationally
intensive today, but this poses little practical hindrance since a
notable characteristic of many sensor network deployments is
an asymmetry in architecture with a data collection and fusion
center endowed with a considerable amount of computing and
storage ability. Thus, if the sensor nodes are able to take
random projections of the sampled signal, the fusion center
will be able to reconstruct the signal with high probability
using only a fraction of what the Nyquist rate would have
required.

While many CS mechanisms have focused on signal recon-
struction, interesting results for event detection have also been
reported [14]. For example, Davenport et. al. [15] introduce
the smashed filter method that exploits the fact that a partic-
ular object has a unique set of manifolds, which efficiently
describes object characteristics. They have shown that object
recognition in images is possible with far fewer samples than
traditional detection schemes. Dang et. al. [16] describe an
event detection scenario to detect and classify cane-toads
in northern Australia using a combination of randomized
sampling and matched filters.

A key observation that researchers have made for CS based
event detection schemes is that the number of measurements
required to reliably detect the signal can be considerably
lower than for CS reconstruction. Recently, a new algorithm
proposed by Duarte, et. al. (IDEA [17]) demonstrates this by
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utilizing knowledge of where the event may be present in the
sparse domain. The mechanism employed in the algorithm
is an iterative greedy search procedure called orthogonal
matching pursuit (OMP [18], [19], [20]), which conceptually
looks for the single component that best describes the signal.
It then removes this component from the signal and repeats
the procedure for a fixed number of iterations. IDEA builds
upon OMP in that by knowing which components represent
the event signature, OMP can terminate as soon as these
components are found. This results in not only fewer OMP
iterations, but also requires fewer sample measurements.

An alternative to OMP for reconstruction from incoherent
projections is called basis pursuit (BP). BP uses a relaxation
of the ideal `0 norm sparse recovery procedure to an `1
norm minimization [9], and has been demonstrated in [8]
to perform better than OMP in practice. Intuitively, this is
because BP attempts to find the global minimum while OMP
might get caught in a local dip. There are two drawbacks
of using BP over IDEA for detection, however. The first is
that though `1 norm minimization can complete in polynomial
time, the computation requirement is far higher than OMP
[20]. The second is that since BP attempts to reconstruct
the signal completely, the number of measurements required
for comparable detection performance may actually be higher
than IDEA. In a practical sensor network deployment with
a capable back-end fusion center, the first drawback can be
overlooked. This paper focuses on overcoming the second
drawback.

Our solution to the problem was inspired by the recent work
of Candes, et. al. [21], which applies an iterative procedure
around `1 norm recovery. In each iteration of the loop, an
adaptive weighting matrix is applied while performing the
minimization. The weights used in each iteration is an inverse
function of the values computed in the previous iteration. The
effect of this form of weighting is an equalization of the
penalty faced by each component, making the re-weighted `1
norm minimization a much closer approximation to `0 norm
minimization.

The solution we propose applies the same insight, but in a
novel way. If we know where the event’s components lie in the
sparse domain, we can bias those components so that they are
artificially enhanced against background noise. This is done

Original Conventional BP (400Hz), No weighting

Conventional BP (20Hz), No weighting Weighted BP (20Hz)

Fig. 1. The effects of weighted `1 reconstruction of a 450Hz tone of 20dB
SNR using 20 Hz random sampling.

by applying a weighting matrix similar to [21], but choosing
weights such that detection probability improves. The solution
to both the unweighted and the weighted problems will adhere
to the measurement constraints, but the effect of weighting is
that of improving the ’contrast’ of the signal against noise.
This is visually depicted in Figure 1 for the detection of a
single frequency tone at 450 Hz in the presence of white noise.
The reconstruction is performed in the Fourier domain using
an average sampling rate of 20 Hz. Notice that as the weighting
factor is increased, the frequency tones progressively stand out.

It is important to mention here that enhancement through
biased weighting may hurt false alarm performance. If the
noise or interference reside at the same locations as the event,
they will be erroneously enhanced too. For most realistic event
signatures and scenarios, however, the structure of the signals
and noise will be distinct enough that false detections will
be minimal. We evaluate this issue in detail in Section IV. To
complete the solution, we also propose to use the Winner Takes
All (WTA) strategy for detection. This strategy tests whether
the top components resulting from the weighted `1 norm
minimization correspond to the event signature locations. If
not, the event is declared absent, however large the component
values are. We compare this strategy to that proposed in IDEA
[17] that tests against some precomputed threshold, γ. We
show in Section IV why thresholding performs better than
WTA in simulation, but results in reduced performance with
a real implementation.

An additional contribution of this paper is an implementa-
tion of the proposed solution on off-the-shelf MicaZ sensor
nodes. In Section III, we show how RIP compliant random
projections can be taken on these motes. In Section IV we
evaluate both simulated and experimental performance on
a sensor network testbed for a number of sampling rates
in various noisy environments. In the following section, we
formulate our detection problem.

II. WEIGHTED `1 NORM MINIMIZATION

Before we determine the context of the detection procedure,
we first outline the BP estimation problem as follows: Assume
that the signal of interest x ∈ Rn and that a set of measure-
ments z ∈ Rk, k � n are available to us, such that z = Ax ,
where A ∈ Rk×n is the measurement projection matrix. Then,
under the condition that x is sufficiently sparse, the solution
to the following combinatorial optimization problem recovers
the signal exactly:

x̂ = argmin
x̃
‖x̃‖`0 s.t. z = Ax̃ (1)

where ‖x‖`0 , |{i : xi 6= 0}|. Equation 1 is NP-complete
in general. Instead, a relaxed version of the problem that is
convex is proposed:

x̂ = argmin
x̃
‖x̃‖`1 s.t. z = Ax̃ (2)

where ‖x‖`1 ,
∑n

i=1 |xi|. It is shown in [7] that under the
sparsity condition and that A satisfies the restricted isometry
property, the reconstruction x̂ is exact with overwhelming
probability [9]. Practically, this means that if the signal is



sparse in the sensing domain, then taking k measurements
through a suitable linear transformation A will be sufficient to
reconstruct the signal. If the signal is not sparse in the sensing
domain, but in another known domain, the reconstruction must
be performed in two steps. Assume a separate invertible linear
transformation F which renders the signal sparse, that is,
y = Fx where F ∈ Cn×n . For example, if the signal x was
a single frequency tone, then its time domain representation
is not sparse, but with F as the Fourier transform, y is sparse.
The equivalent reconstruction procedure is then:

ŷ = argmin
ỹ
‖ỹ‖`1 s.t. z = AF−1ỹ (3)

x̂ = F−1ŷ (4)
An additional requirement for the reconstruction to succeed

is that F be incoherent [9] with the sensing domain. For many
real-world signals, the sensing domain is temporal or spatial
and the incoherent transform that (approximately) ’sparsifies’
the signal is well known and there exist fast algorithms for
computing both Fx and F−1x.

It is understood that `1 regularization performs quite well
when the sparsity condition is satisfied, but the question we
wish to investigate here is whether an event signature can be
identified from fewer measurements. To aid our understanding
of the problem, we refer to a recent development by Candes,
et. al. [21] that attempts to bridge the gap between Equation
1 and 2, without losing the convexity property of the latter.
A key property of the `0 minimization problem is that it
treats all non-zero values the same, whereas the `1 version
of the problem penalizes component values based on their
magnitude. The authors propose an iterative solution to the
problem by modifying Equation 3 as follows:

ŷ = argmin
ỹ
‖Wỹ‖`1 s.t. z = AF−1ỹ (5)

The weighting matrix W in [21] is an iteratively updated di-
agonal matrix with entries that are inversely proportional to the
magnitude of the solution ŷ from the previous iteration. The
algorithm is initiated with W = I . The authors demonstrate
both analytically and numerically that this inverse relationship
between weights and signal magnitudes renders the procedure
a better approximation to `0 minimization.

Returning to our detection problem, we propose to exploit
weighted `1 norm minimization as follows: if we know the
set Ω of component indices of y that represent the event to be
detected, we construct the diagonal matrix W in Equation 5
as :

W = diag(
1
w1
, ...,

1
wn

),
wj ≥ 1 ∀j ∈ Ω
wj = 1 ∀j /∈ Ω (6)

Such a weighting reduces the penalty of only those com-
ponents that form part of the event signature. This improves
their chances of being selected compared to the unweighted
components. One way to view the effect of this biased
weighting is that it artificially enhances the contrast of the
event against background noise. Candes et. al. [21] particularly
support this interpretation when the event signature is present.
One interesting observation we see in Fig. 1 is that as the
weighting value 1

wi
decreases the results tend to stabilize,

which means that a weighting less than a certain value gives
an almost identical result. This is partly because the norm ball
‖Wỹ‖`1 hits the same point on the polyhedra z = AF−1ỹ
beyond a point.

In an event detection scenario, the more interesting question
arises when the event is not present as opposed to the case
in [21], because then the weighting violates the implicit
assumption that the event signature is present at those entries.
If the event is absent, noise or interference at indices Ω, will
be erroneously enhanced, therefore choosing the right weights
wΩ is a critical decision in the procedure. This particular
interest suggests that we cannot directly use the approach by
Candes et. al. Further, we conjecture that the event signature
has a structure distinct from noise and if the detection function
accounts for this distinction, the number of false alarms will
be minimal. In general, however, a trade-off exists between the
number of missed detections and false alarms and in Section
IV, we show that that choice of weights depends heavily on
the detection function and the signal-to-noise ratio (SNR) and
to an extent, on the average sampling rate.

A. Detection Functions

We declare the hypothesis of an event being present (H1)
or absent (H0) by computing D(ŷ,Ω), where ŷ is the solution
to Equation 5 with weighting using (6), |Ω| ≥ 1 and | · | is the
cardinality operator. In general, the function D is non-linear
and in this paper we consider two alternatives: precomputed
threshold testing (PTT) and winner takes all (WTA), which
are defined as follows:

DPTT (y,Ω) =

{
1 if yj > θj ∀j ∈ Ω
0 otherwise

(7)

where θΩ represents a threshold for each component in y
that the event signature is composed of. PTT is an adaptation
of the γ thresholding procedure described in IDEA [17]. WTA
is defined as:

DWTA(y,Ω) =

{
1 if M(y) ∈ Ω
0 otherwise

(8)

where M(y) returns the index of the maximum component
in y. The WTA procedure, as defined, declares the event
present if the index of max(y) belongs to Ω. A more con-
servative version, kWTA may compare the largest k values of
y. When |Ω| = 1, these are equivalent.

Detection performance is measured in terms of the probabil-
ity of missed detections, PMD and probability of false alarms,
PFA, which are defined as:

PMD = Pr[D(ŷ,Ω) = 0 | H1] (9)
PFA = Pr[D(ŷ,Ω) = 1 | H0] (10)

We extensively evaluate the performance of WTA and PTT
in both simulation and through experiments in Section IV, but
first describe some nuances that are specific to implementation
on low-end sensor network platforms.



III. IMPLEMENTATION

In order to test our proposition in practice, we implemented
the solution using MicaZ sensor motes running the TinyOS
operating system. To motivate the application of a CS based
approach, we selected the use of the microphone for acoustic
signature detection similar to [22]. We chose to detect a
single frequency tone at 450 Hz using the Fourier basis for
reconstruction. It is arguable whether single tone detection
has any significant practical uses. However, we chose this
seemingly simple detection scenario as a case study for three
reasons. First, it provides us with a baseline for comparison
using a well known basis. Second, the solution is easily
extended to event signatures sparse in other bases, with no
change to the TinyOS code. And finally, single frequency tones
have little structure to be exploited by the detection function
and thus the false alarm rates reported in Section IV may be
considered worst case.

MicaZ sensor motes contain an 8 MHz 8-bit ATMEGA128
processor with built-in ADC and an IEEE 802.15.4 compliant
radio, but sustain sampling rates of only a few hundred Hz,
partly due to the absence of a DMA unit. Clearly, detecting the
tone via Fourier domain analyis on the mote itself or through
sampling and collecting data wirelessly at the Nyquist rate
would have been infeasible. Our goal was to detect the tone
reliably at a fusion center at the lowest sampling rate.

A. Taking Random Projections

Perhaps the most important aspect of implementing CS is
the construction of the projection matrix A (in Equation 5)
through which the sensor node collects incoherent sample
measurements. From [11], we learn that when the elements of
A are independent realizations of a Gaussian random variable,
such that Aij = N (0, 1

n ) or when they are independent realiza-
tions of an equiprobable ± 1√

n
Bernoulli random variable, the

restricted isometry property is obeyed. Practically, however,
this requires the sensor node to not just sample at the Nyquist
rate but to also perform floating point multiply and add
operations at that rate to compute the random projections. The
device described in [23] is a novel hardware based approach
to computing random projections, but we desired a lightweight
software approach for our implementation.

Following the approach of uniform random sampling from
[24], [15] and studying the procedure in [16], we sought to
model our implementation to theirs. Uniform random sam-
pling, however, is non-causal if the random numbers are
generated on-the-fly. To ensure causality, one would have
generate, sort and store the numbers somewhere in memory.
Further, this technique has the disadvantage that two sample
times may be closer together than the hardware can handle.
Dang, et. al. [16] circumvented this problem by applying a
scaling factor before and after generating the random sample
indices. To avoid quantization effects, they add a normally
distributed jitter to the resulting values.

A simpler technique that solves both issues and is a good
approximation to the uniform distribution is mentioned in
Bilinskis and Mikelsons [25] and was first suggested by

p(
t 1)

p(
t 2)

p(
t 3)

p(
t 4)

p(
t 5)

p s(t
)

Fig. 2. The effect of an additive Gaussian random sampling process

Shapiro and Silverman [26]. If we define the k sampling
instants as ti, i ∈ {1, ..., k}, then the sampling instants are
generated using:

ti+1 = ti + τi (11)
where τi are independent realizations of a Gaussian ran-

dom variable ∼ N (µ, r2µ2). Here, µ represents the required
averaged sampling intervals and r determines the width of
the bell and the resulting speed of convergence to a uniform
distribution. The effect of the additive random sampling pro-
cedure is visually depicted in Figure 2 (adapted from [25])
with r = 0.25. The top 5 plots represent the PDFs of each
ti, i ∈ {1, .., 5} and the bottom plot represents the PDF
of realizations of all ti, which approximates the uniform
distribution as required.

We use this procedure in our implementation to generate
random sampling times on-the-fly, with µ decided by the
sampling rate and r fixed at 0.25. Ironically, we use the
uniform random number generator provided in TinyOS to
generate the Gaussian random variable by approximating it
to an Irwin-Hall distribution of order 12 as described in [27].

IV. RESULTS

Figure 3 depicts a schematic representation of the detection
process used for evaluation. A host machine generates the sig-
nal and white noise at a specific SNR at a high sampling rate.
This audio stream is played out over a speaker and recorded
through the microphone of a sensing MicaZ mote using
random projections as described in Section III-A. The recorded
samples are then wirelessly transmitted to a basestation mote
connected to the fusion center, which performs weighted `1
minimization to recover the signal in the frequency domain.
The FFT coefficients are fed into the detection function along-
with the indices Ω to produce the hypothesis decision. We also
run a simulation version of the process, which emulates the
recording and collection process by applying the same random
projection matrix as would have been computed on the sensing
mote.

Sensing
Mote

Base 
Station

ŷ

z = Ax + η′x + η H

Fig. 3. Schematic representation of detection process with MicaZ motes and
in simulation
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We show results from Monte Carlo simulations and exper-
iments at three different sampling rates (10, 20 and 31 Hz)
and at three different SNRs (20, 30 and 40 dB) each. The
set of plots on the left illustrate performance using PTT and
on the right, using WTA, as defined in Section II-A. The
threshold θΩ for PTT were computed similar to a likelihood
ratio test in hypothesis testing, i.e θΩ = c · 10

SNR
10 , where

the constant parameter c, (0 < c < 1) was tuned to reduce
overall error probability. We first evaluate whether using a
biased weighting approach enhances performance (in terms of
PMD and PFA) compared to a conventional `1 technique and
while using the iterative reweighting technique described in
[21]. This comparison is shown in Figure 4.

We observe some general trends right away – increasing
SNR or sampling rate reduces both PMD and PFA for all
three techniques. This is expected, since a higher quality signal
(or the lack of it) as well as additional samples improve
both the detection and rejection performance of the system.
Note, however, a slight discrepancy at 31 Hz and 20 dB for
weighted `1 minimization. We believe this is due to inevitable
differences in experimental setup across the runs. Simulation
results in Figure 5 tend to follow the trend correctly.

Comparing first conventional and reweighted `1, we observe
that reweighted `1 is always better (or no worse) than con-
ventional `1 in terms of PMD performance at all SNRs and
sampling rates. False alarm performance is near perfect for
both, but at the cost of high missed detection rates. Weighted
`1, with a weight factor w = 2, results in lower PMD, even at
low SNRs. In particular, we see that weighted `1 with PTT at

40dB SNR performs better than conventional and reweighted
`1 at 20 Hz and above. Again, this is not surprising because
weighted `1, even with a slight bias, gravitates the solution of
the minimization to a favorable state. This comes at the cost
of higher PFA, though, since there many cases where noise
components coincide with the indices Ω. We focus more on
this lost PFA performance below.

Figure 5 illustrates results at 31 Hz across varying coeffi-
cient weights. Included in this set of plots are results from
simulated runs of the same experiments. A few trends are
visible here too – PMD is a monotonically non-increasing
function of w for fixed SNR and sampling rate and PFA is a
monotonically non-decreasing function of w. This conlusion is
intuitive, owing to the fact that as w increases, the penalty on
the indices Ω is subsequently reduced, promoting those indices
in the solution (even if the signal was not present). Note that
at high SNR, false alarm rates are negligible even at w = 10
for PTT, but are quite high for WTA. However, when SNR is
low, WTA outperforms PTT slightly. We believe this is because
WTA picks the maximum component in the FFT coefficients
and even in low SNR regimes, the signal component is inclined
to stand out.

It must be mentioned here that the improved performance
of PTT has a cost associated with it. Selecting the right
thresholds θΩ is non-trivial in cases where the signal is not
completely captured within the samples being processed. Since
the reconstruction is performed on a block of received data
(in our case, we used 1 sec worth of samples) each time, the
event signature may not be aligned with the block. In order
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to avoid this complexity and to demonstrate the asymptotic
performance of the system, we applied a preprocessing step for
experimental data to recover the correct alignment by padding
the event signature with silence.

Another aspect worth noting is that with WTA, all SNRs
result in the same PFA performance, in simulation results.
This is not a discrepancy. As the SNR increases, the chances
of detecting the signal are higher if it is present (resulting in
lower PMD). But, when there is only noise (which happens
for false alarms), SNR is effectively 0, so the same noise
component gets picked everytime regardless of SNR. Note
that this result is also a side effect of maintaining the same
random noise seeds across the Monte Carlo simulation runs.
This behavior is not present in the experimental results though
the random noise generated is be the same because the noise in
the recorded samples is affected by multiple factors, including
ambient and circuit noise.

Figures 6 and 7 show the performance of the system for
average sampling rates of 20 Hz and 10 Hz respectively. We
observe that both PMD and PFA performance worsens as the
sampling rate is reduced. This is because the feasible solution
space that conforms to the polyhedra z = AF−1ỹ expands to
include many points that may be classified wrongly.

A. Event Signatures with Structure

In Figure 8, we illustrate results that test our conjecture
that signals with structure may be detected more easily, with
possibly fewer false alarms. A trivial signal structure results
from two frequency components, so we add an equal amplitude
tone at 150 Hz to the original event signature and repeat

the experiments. To ensure that we recognize and exploit the
structure correctly, we used a support vector machine (SVM
[28]) classifier for detection rather than PTT or WTA.

Using this classifier required model selection, which was
performed through randomized 10-fold cross validation and
training, which was conducted with data from 50% of the
simulation runs. The features used for classification were the
magnitudes and angles of the complex FFT coefficients. To
establish a fair comparison, the same detection procedure was
also performed on the single frequency tone signature. Both
events were randomly sampled at 31 Hz.

Surprisingly, we observe little or no improvement in the dual
tone detection scenario. In fact, we observe some deterioration
in PMD performance. Upon inspection, we understand two
reasons for this behavior. Firstly, since SNR is computed
using the total signal power, which is now shared between
two frequency components, individual indices constitute a
lower power contribution against the same noise power. And
secondly, by introducing an extra frequency tone, we have
changed the sparsity of the event signature. From [7], we know
that the number of measurements required for reconstruction
is proportional to the sparsity of the signal. We surmise that
it is the simple structure in the signature that offsets the
deterioration resulting from both these issues.

V. CONCLUSION

We have presented a novel modification to the basis pursuit
reconstruction procedure for known-signature event detec-
tion from sparse incoherent measurements. This modification
was inspired by a recent development that uses an iterative
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Fig. 8. PMD and PFA detecting a dual tone signal using an SVM classifier.

reweighting technique to equalize the penalty of each com-
ponent during `1 minimization. We show through simulations
and an implementation on MicaZ motes that this strategy is not
only feasible at rates 30× below the Nyquist requirement but
that it results in higher detection rates at the cost of minimal
false alarm performance compared to both conventional `1 and
reweighted `1 regularization. We show that threshold testing
performs better for detection when the event signature is
aligned with the sample block, but that simply testing the
maximum component’s index works well in practice.

A key advantage of parameterized weighted `1 minimization
is that it allows designers to tune the performance of the
reconstruction procedure based on prior event probabilities, if
known, and for acceptable detection and false alarm rates. This
was not possible with either conventional `1 or reweighted
`1 minimization, both of which rely on tuning parameters
within the detection function. We also show results using a
more sophisticated SVM event classifier that signals with some
structure may be detected and rejected more reliably.
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